エネルギーセクター

- ✓ 実践事例①: 伊藤忠商事株式会社
- ✓ 実践事例②: 千代田化工建設株式会社

3-21

伊藤忠商事株式会社

□生活資材部門 □建設·物流部門

□情報·通信部門 □金融·保険部門

■情報・金融カンパニー

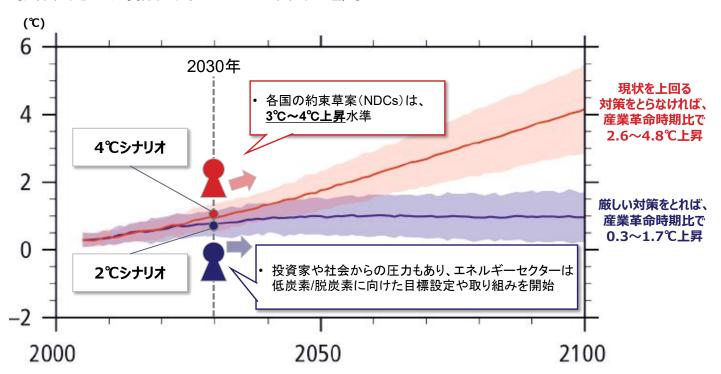
今回対象部署

ステップ 2 「リスク重要度の評価」 ステップ 2 3 4 5 気候変動が発電事業セグメントにもたらすリスクと機会

リスク項目	事業インパクト(考察例)				
炭素価格/排出権取引	 ・ 炭素価格や排出権取引導入により、火力発電へのコストが増加 (コストが売電価格に転嫁できない可能性) ・ 再生可能エネルギーの競争優位性が増大 				
各国の炭素排出目標/ 政策	・炭素排出の規制が厳格化すると、資産売却の検討や追加の設備投資が必要となる可能性	大			
エネルギーミックスの変化	 特定の電源で売電ができなくなる可能性や、機会損失が発生し、売上減少の可能性 資産売却の検討、他の発電源への設備投資が必要になる可能性 	大			
再エネ・省エネ技術の普及 (CCS、蓄電池、省資源設 計等)	 ・ 火力発電にはCCSの付帯が必須になった場合、追加のコストが発生 ・ 再エネへの大幅なシフトには、蓄電池やグリッドなどへの投資の拡大が必要となる ・ 低コスト・高効率な再エネ・省エネ新技術が普及した場合、火力発電の需要が減少 	大			
再エネ価格(FIT価格)	・ <u>新規再エネ案件については売電価格が下落</u> する可能性 ・ 再生可能エネルギーの競争優位性が増大	大			

炭素価格による発電コストの上昇やエネルギーミックスの変化が財務上大きなインパクトをもたらす

• ダイベストメントの動向が加速し、火力発電事業継続により資金調達コスト増加する可能性


大

3-23

投資家の評判変化

【世界平均地上気温変化予測(1986~2005年平均との差)】

ステップ 3 「シナリオ群の定義」 IEA等の科学的根拠に基づいた前提条件

ステップ 2 3 4 シナリオ 4℃ 2℃ 5

		現在	2040年		出所
		(2014年時点)	4℃の世界@'40年	2°Cの世界@'40年	шы
炭素価 格/ 排出権 取引	炭素価格/ 排出権取引	N/A	N/A	140 ドル/トン(米国)	・IEA WEO2016 (450シナリオ)
各国の 炭素排 出政策 *	化石燃料価格	石炭: 78 ドル/トン ガス: 4.4 ドル/Mbtu(米国)	石炭: 108 ドル/トン ガス: 7.5 ドル/Mbtu(米国)	石炭: 77 ドル/トン ガス: 5.9 ドル/Mbtu(米国)	• IEA ETP 2016 (4DS, 2DS)
	再工ネ価格 (FIT価格)** (米国)	N/A	太陽光ユーティリティスケール: 7.2~8.8 円/kWh 陸上風力: 6.2~7.7 円/kWh	太陽光ユーティリティスケール: 6.6~7.1 円/kWh 陸上風力: 6.2~7.7 円/kWh	・IEA WEO2016 (NPS、450シナリオ)
エネル ギーミッ クスの 変化	電源別エネル ギー生産量 (米国)	石炭火力: 1,713 TWh (40%) ガス火力: 1,161 TWh (27%) 再エネ: 570 TWh (13%)	石炭火力: 1,016 TWh (21%) ガス火力: 1,480 TWh (30%) 再エネ: 1,488 TWh (30%)	石炭火力: 153 TWh (3%) ガス火力: 959 TWh (20%) 再エネ: 2,560 TWh (54%)	・IEA WEO2016 (NPS、450シナリオ)
再エネ・ 省エネ 技術の 普及	CCSの普及率	N/A	N/A	CCS付帯石炭火力: 64 % CCS付帯ガス火力: 18 %	• IEA ETP 2016 (2DS)

3-25

ステップ 2 3 4 5 シナリオ **4℃** 2℃ ステップ 3 「シナリオ群の定義」 4℃の世界では、再エネを一定量拡大しつつ、現在の延長線上で事業を拡大

低炭素移行へ向け一定の政策展開

- ✓ 化石燃料への補助金を段階的に廃止
- ✓ 発電効率基準を強化
- ✓ 一部の国で炭素税導入

化石燃料への圧力

- ✓ 石炭・石油等からのダイベストメント
- ✓ 再エネへの投資は横ばい~やや増加

Action より積極的な情報開示と対話の促進

原料コストの上昇

サプライヤー(原材料)

✓ 需要増加により石炭・ガスともに価格が 上昇

再エネコストの低下

- "低炭素発電技術進歩・コスト低下 ✓ 再エネ安定化技術の導入コストは依然とし て高い
- ✓ CCSは普及しない

新規参入者

地域によってはIPPやPPSが広まる

現在の延長線上の 業界/自社 ポートフォリオを維持

- ✓ 全体の電力需要は拡大
- 再エネ比率は徐々に拡大、途上国では石 炭需要も増加
- 炭素税やCCSによる追加コストは限定的 で、火力発電の収益性は維持
- ✓ 物理リスクにより発電コスト増加

集約型発電からの移行

↑ 電力需要は世界的に拡大

- 全体の電力需要は拡大
- 先進国では石炭を中心に火力発電の需 要が減少(ガスは増加)
- 再エネコストの下落により一部再エネへ のスイッチが発生
- ✓ 台風や洪水の発生により停電が発生

現状の延長線上のポートフォリオを維持しつつ、物理的リスクに備えBCPを強化 より積極的な情報開示と対話を促進し、レピュテーションの棄損を防ぐ

ステップ 3 「シナリオ群の定義」

2℃の世界では、火力発電を抑制・低減し、再エネの比率を大幅に拡大

dh

低炭素移行へ向けた政策展開の強化

- ✓ 化石燃料への補助金を廃止
- ✓ 発雷効率基準を強化
- ✓ 多くの国で炭素税導入
- ✓ CCSへの補助開始・強化
- ✓ Capacity Market導入国の増加

化石燃料への圧力

石炭・石油等からのダイベストメント ✓ 再エネへの投資が増加

原料コストの変化

サプライヤー(原材料)

- ✓ ガス価格は上昇
- ✓ 石炭価格は緩やかに下落
- ✓ 再エネ建設用地の価格上昇、競争激

再エネコストの低下

- ″低炭素発電技術進歩・コスト低下
- 再エネ・EV普及の拡大により蓄電池や希少 資源等の価格が高騰
- ✓ CCSが普及

Action 再工ネ関連投資の増加

再エネ比率大幅増加

- 全体の電力需要は拡大
- 発電の多くが再エネで賄われる
- 再エネ安定化のバックアップ電源は石炭 からガスに移行(石炭需要減少)
- 炭素税やCCS等による追加コストの影響 で火力発電の収益性が低下

Action 再工ネ発電比率の増加

🔍 電力需要は世界的に拡大

電力会社・消費者

- ✓ 全体の電力需要は拡大
- ✓ 炭素価格が導入され、火力発電の需 要が減少
- ✓ 再エネコストの低下により再エネへの スイッチが発生

Action ポートフォリオの変更、 競争優位性の高いエネルギーの提供

集約型発電からの移行

。 分散型発電・自家発電の普及

Action 分散型・自家発電事業の取り込み

脱炭素に向けた世界の流れに合わせて、再エネを中心とした事業ポートフォリオを構築しつつ、 新たな電力関連事業機会を追求する

3-27

ステップ 4 「事業インパクト評価」

ステップ 2 3 4 5

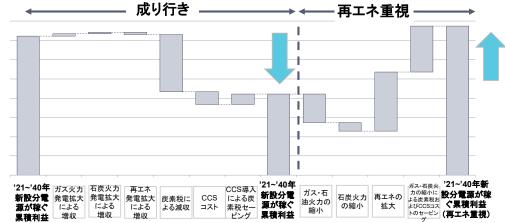
シナリオ <mark>4℃ 2℃</mark>

2℃/4℃いずれのシナリオにおいても、少なくとも現状レベルの利益を維持する

4℃シナリオ

(イメージ)

- ガス火力発電は収益性向上
- 石炭火力発電は収益性低下
- 再エネも収益性低下
- 全体として、累積利益が低下する 場合がある



2℃シナリオ

(炭素税100%賦課)

(イメージ)

- 再エネ以外の発電には炭素税が 発生し、結果的に大幅に収益性が 低下
- 対応策として、再エネ新設を増や すことで収益の維持・拡大が可能

